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Geometric-Optical Bidirectional Reflectance
Modeling of the Discrete Crown Vegetation Canopy:
Effect of Crown Shape and Mutual Shadowing

Xiaowen Li and Alan H. Strahler, Member, IEEE

Abstract—In the case where a vegetation cover can be regarded
as a collection of individual, discrete plant crowns (such as forest,
woodland, savanna, or shrubland), the geometric-optical effects
of the shadows that the crowns cast on the background and on
one another strongly condition the brightness of the vegetation
cover as seen from a given viewpoint in the hemisphere. At
the “hotspot,” when illumination and viewing positions coincide,
shadows are hidden behind plant crowns and the scene appears
bright. As the viewing position diverges from that of illumination,
the shadows behind the crowns are progressively revealed and
the scene darkens. Because, in general, the shadows will not be
circular, the amount of shadow revealed will be a function of
both the zenith and azimuth angles by which the viewing and
illumination positions diverge, rather than a simple phase angle
between them. This effect creates an assymetric hotspot, in which
the shape of the hotspot is related to the shape of the plant
crowns in the sceme. At large zenith angles, mutual shadowing
of crowns becomes an important factor. Illumination shadows
will tend to fall on other crowns, rather than the background,
and will preferentially shadow the lower portions of adjacent
crowns. Further, these shadows will be preferentially obscured
since adjacent crowns will also tend to obscure the lower portions
of other crowns. This effect produces a “bowl-shaped” BRDF
in which the scene brightness increases at the function’s edges.
Our paper derives formulas describing the hotspot and mutual-
shadowing effects and presents examples that show how the shape
of the BRDF is dependent on the shape of the crowns, their
density, their brightness relative to the background, and the
thickness of the layer throughout which the crown centers are
distributed.

Keywords—Hotspot, bidirectional reflectance distribution func-
tion, plant canopy, vegetation reflectance, reflectance modeling.

NOMENCLATURE

A Area of the footprint of the sensor’s field of
view, or pixel size.

A, Area of crown surface within A that is both
illuminated and viewed, as projected onto the
background.
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Area of background within A that is both
illuminated and viewed.

Area of crown surface within A that is not
illuminated but viewed, as projected onto the
background.

Area of background within A that is not
illuminated but viewed.

Vertical half axis of ellipsoid.

Average radiation exitance from sunlit crown
surface, as viewed by sensor.

Ratio I'; /T for a single crown.
Ratio K. /(1 — K ) for a pixel.

Average radiation exitance from sunlit
backgorund surface, as viewed by sensor.

Variable for height at which a crown center is
located.

Lower bound of height distribution of crown
centers.

Upper bound of height distribution of crown
centers.

Direction vector of illumination
Proportionof A, in A.

Proportion of A, in A.

Proportion of A; in A.

Mutual shadowing proportion.

Mutual shadowing proportion in the
illumination direction.

Mutual shadowing proportion in the view
direction.

Count of crown centers distributed in a pixel.
Density of crown centers per unit area as a
function of height within the canopy.

Overlap function of view and illumination
shadows on ground.

Conditional probability that a crown surface
element will face the viewer given that it is
shaded from view.
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P, Overlap area of P;M;I', and P,M,I, in
fraction ofT’,,.

P, Conditional probability that a crown surface
element will face the sun given that it is shaded
from view.

R Horizontal radius of ellipsoid.

R(i,v) Directional refiectance factor.

] Direction vector for normal of a facet of crown
surface, or as variable representing such facet.

T Average radiation exitance from shaded crown
surface, as viewed by sensor.

v Directional vector for viewing.

VA Average radiation exitance from shaded
background, as viewed by sensor.

B A parameter indicating the vertical range of
distribution of crown centers.

r Area of background shaded in either view or
illumination directions by a single ellipsoid.

T, Area of view and illumination shadow of a
single ellipsoid on the background.

T, Area of view shadow of a single ellipsoid on
the background.

0 Zenith angle.

8; Zenith angle of illumination direction.

0. Effective zenith angle of illumination direction,
adjusted for spheroidal shape of crown.

0, Zenith angle of view direction.

8, Effective zenith angle of view direction,
adjusted for spheroidal shape of crown.

A Density of spheroid centers in a pixel or
footprint, ie., n/A.

¢ Relative azimuth of illumination and view
directions.

I. INTRODUCTION

The interaction between electromagnetic radiation and ter-
restrial plant canopies is a complex phenomenon and a key
element in many applications of remote sensing. In recent
years, much effort has been devoted to understanding and
modeling the dependence of the bidirectional reflectance dis-
tribution function (BRDF) of vegetation-covered earth sur-
faces as a function of various environmental, structural, and
physiological conditions as well as viewing and illumination
geometries. Typical approaches have included two-stream,
radiative transfer, geometric optics, hybrids of two or more
of these, and numerical simulation. Some are applicable to
continuous vegetation covers, such as crops, while others are
best utilized for discontinuous covers such as forests.

To be realistic, all models have to deal with the interactions
that occur within and between individual canopies. These can
exist on several levels, including single scattering—shadowing
of leaves, crowns, and background by leaves and crowns—and

multiple scattering among leaves, crowns, and background.
The former effect creates the “hotspot,” a peak in directional
reflectance in the antisolar direction that is commonly observed
in vegetation canopies when the sun and observer are at the
same position in the hemisphere. It occurs because the leaves,
stems and trunks that comprise the plant cover hide their own
shadows under these conditions, and thus the scene appears
bright due to maximal single scattering.

A. Background

The earliest practical plant canopy reflectance model is
that of Suits [1], [2], which adds direct irradiation and di-
rectional exitance to a two-stream Kubleka~Monk [3] model.
The hotspot is treated as an empirical function reducing the
attenuation of exiting radiation as a function of the phase
angle between illumination and view directions. The model
further assumes that leaves are Lambertian and either vertical
or horizontal. It has been extended by Verhoef [4] to the
case of variable leaf-angle distribution (the SAIL model), and
by Reyna and Bhadwar [5] to include a specular reflectance
component. More recently, Jupp and Strahler [6] have added
a proper geometric-optical kernel to the Suits model that is
driven by leaf shape, arrangement, and spacing.

In classical radiative transfer models, the medium is typi-
cally treated as a horizontally uniform series of plane-parallel
layers composed of small absorbing and scattering particles.
This type of model is well established for the interaction
between radiation and the atmosphere [7], but, in the case
of a vegetation canopy, the scattering elements (e.g., leaves)
are of finite size and thus a pure radiative transfer approach
is not possible. Rather, the shadowing behavior that produces
the hotspot through enhanced single scattering must be ac-
commodated for a radiative transfer model to be realistic.
Sometimes this is included in an empirical phase function
for the canopy as a whole [8]; in other treatments, the
phase function of the leaf surface is separated from a phase
function that describes the hotspot [9]. The hotspot function
can take several forms—sometimes fully empirical, other
times driven specifically by the shape, orientation, and/or
spacing of leaves. Functions include piecewise-linear, negative
exponential, trigonometric, and geometric. Examples may be
found in models developed by Gerstl [10], (11], Myneni et al.
[12], [13), and Marshak [14]. Various approximate solutions
have also been derived, such as the two-stream solutions of
Nilson {15], [16] and Verstraete [9]. These types of models
are best applied to continuous vegetation covers, such as crop
canopies or homogeneous grasslands.

B. Geometric-Optical Approach

In the geometric-optical approach, the bidirectional re-
flectance is modeled as a purely geometric phenomenon that
results when scenes of discrete, three-dimensional objects are
illuminated and viewed from different positions in the hemi-
sphere. The shapes of the objects, their count densities and
patterns of placement are the driving variables, and they con-
dition the mixture of sunlit and shaded objects and background
that is observed from a particular viewing direction, given a
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direction of illumination. This mixture, in turn, controls the
brightness apparent to an observer or a radiometric instrument.
The objects themselves may be leaves or individual, discrete
plant canopies, or, in hybrid models, leaves within discrete
canopies. In previous work, we have emphasized the individual
tree canopy as the functional element in modeling, and have
applied geometric-optical models of bidirectional reflectance
successfully for open and moderately closed stands of conifers
treated as “green” cones on a contrasting background [17],
[18]. Jupp et al. [19] used a similar approach for trees as
spheroidal objects, and extended the treatment to two crown
layers above a background using Boolean logic of Serra [20].
Recently, Strahler and Jupp [21] have provided a more general
Boolean treatment that includes leaves within discrete crown
envelopes as a two-stage, nested model.

Although the geometric-optical approach properly models
the three-dimensional nature of the scene with due complexity,
it greatly simplifies the interaction between elements due to
multiple scattering among leaves and individual canopies.
The reflectance associated with a given viewpoint is treated
as an area-weighted sum of four fixed reflectance compo-
nents—sunlit leaf or canopy, shaded leaf or canopy, sunlit
background, and shaded background—whereas radiative trans-
fer theory shows that all of these components are variable.
For example, the reflectance of a sunlit canopy will be a
function of canopy depth, which will be lesser near the
edges of the crown and greater near the center. Thus, the
“signature” of sunlit canopy will not be uniform. The signature
of shaded canopy will also be nonuniform, as it is related
to the radiation penetrating through the crown, the diffuse
skylight distribution, and multiply scattered radiation from
the ground and other crowns into the shaded portion. Clearly
the signatures of sunlit and shaded background will also be
heterogeneous, due to similar effects.

In practice, however, these simplifications are not always
limiting. In real vegetation covers, especially those of low
and intermediate densities, the variation between signatures
of sunlit and shadowed, crown and background components
is usually much greater than the variation within signatures
of these components. Further, if the vegetation is strongly
absorbing, as is the case in visible portions of the spectrum,
the effects of multiple scattering will be further lessened.
Therefore, we may expect that a geometric-optical model alone
will still be quite useful as a first-order approximation that is
able to explain the major portion of variance in the BRDF of
a forest, woodland or shrubland.

In our previously published work on geometric-optical
modeling of forest reflectance, a problem has arisen when
either or both illumination or viewing directions assume large
zenith angles. At such angles, the tops of the trees are more
likely to be illuminated and visible than the lower portions,
and thus the scene will appear brighter than a model simply
based on random shadowing would predict. This gives the
BRDF a “bowl-shape,” in which the reflectance increases for
a given sun angle as the observer descends to a position low
on the horizon [22]. We refer to this as the “mutual-shadowing
problem,” since it arises because of the mutual shadowing and
obscuring of crowns by one another.

Although in our earlier paper [18] we developed an em-
pirical correction for the mutual-shadowing effect, a primary
objective of this paper is to improve this treatment so that
it properly reflects the geometry and count-density of the
objects. Further, our treatment here is developed for the
spheroid as the basic crown shape, which makes it much more
generally applicable than the cone shape used in the former
paper. We also include a new approximation for the ellipse
overlap function, which controls the shape of the hotspot by
determining the shadow area of a crown that is not obscured
by the crown from a particular viewpoint. As before, we
neglect the nonuniformity of component signatures due to
multiple scattering effects, and further assume the components
to be Lambertian. And, for the purpose of better understanding
the geometric-optical effects, we will, for now, assume zero
reflectance for shaded canopy and background.

II. DESCRIPTION OF MODEL

A. General Reflectance Model
In Li and Strahler [18], the BRDF of a pixel is modeled as
the limit of its directional reflectance factor R(i,v):
Jf4 R(s) <i,s><wv,8>L(s),(s)ds
Acosb; 6,

R(Zv ’U) = (1)
where ds is a small Lambertian surface element over area A
of a pixel; R(s) is the reflectance of ds; 7, v, and s represent
the directions of illumination, viewing, and the normal to a
surface element, respectively; < .,. > is the cosine of the
phase angle between two directions; 6 is the zenith angle of
a direction; I;(s) and I,(s) are indicator functions, equal to
one if ds is illuminated (I;) or viewed (I,), zero otherwise.
Here the double integral shows that ds is integrated over the
pixel—i.e., the footprint of the sensor’s field of view.

In order to further the analysis, let’s assume that there are
only two kinds of surfaces over A—background surface and
crown surface—which have Lambertian reflectance G and C,
respectively. We may then write (1) as

R(i,v) = KG+A//

where K, = Ay/A is the proportion of background both
illuminated and viewed. This equation has a very clear physical
meaning. Considering that the union of A, and A, is the
intersection of the set of surface elements that are illuminated
and the set of those that are viewed, only when v and i
coincide can A, and A. achieve a maximum, provided that
the surface elements have no special orientation preference.
Thus, the hotspot is well explained by this equation. Another
obvious and important meaning of this equation is that the
directional reflectance of a scene depends not only on the
material reflectance (related to G and C') but also on its spatial
structure (which determines A, and A.).

For our discussion, it will be helpful to focus on the
two terms of (2). The first term describes how the sunlit
background proportion proceeds to a2 maximum as viewing
and illumination positions in the hemisphere coincide, and the

<i,s§>< U, 8>
——"ds
cosH cosé,

@
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second describes how the sunlit crown surface, composed of
Lambertian facets, similarly becomes maximally exposed to
view at the hotspot, and those facets on tops become dominant
at large viewing zenith angles.

B. K, and the Overlap Function for Crowns

Now, let’s analyze how the first term K,G varies with
illumination and viewing geometry. As in Strahler and Jupp
[21], we assume that the crowns have the shape of a spheroid,
with vertical half-axis equal to b, horizontal radius equal to R,
and height to the center of the spheroid ~. To accommodate the
spheroidal shape easily in the derivations of shadow areas that
follow, we will use the transformation §’ = tan‘l(% tan#);
this simply replaces 6 by the angle that would generate
the same shadow area for a sphere. For simplicity, we will
assume for now that the centers of the spheroids are randomly
distributed in depth from h; to hg over A. We will also assume
that G and C are constant as average signatures over A
and A, so that the problem is to properly model K, and
K, = A /A

In (2), K, can be expressed easily using the Boolean model
[21}:

Kg — e—)\"erz[sec0£+sec9:)—5(6i,ev,¢)] (3)
where O(0;,0,,$) is the average of the overlap function
0(6;,8,, ¢, h) between illumination and viewing shadows of
individual crowns as projected onto the background. Here,
¢ is the difference in azimuth angle between viewing and
illumination positions.

To simplify the problem, Strahler and Jupp {21] approximate
the overlap function by the overlap area of two disks with the
original areas and center positions of the two ellipses. This
approximation is justified when solar zenith and viewing zenith
angles are not too large. In the case of long ellipsoidal shad-
ows, however, this approximation will overestimate the width
of the hotspot in the azimuthal direction and underestimate it
in zenithal direction. To improve the accuracy and preserve the
proper hotspot width information, we have developed another
approximation as follows.

Case 1: ¢ = 0 or ¢ = m First we consider the overlap func-
tion in the principal plane. When ¢ = 0 or 7 (i.e., viewer is
on the other side of the target from the sun), the elliptical
illumination and viewing shadows will be aligned in the same
direction. The overlap area is approximated by an ellipse with
one axis equal to the overlap length and the other equal to the
crown width, yielding

1
0(8;,0,,6) = 3 {sec 6, +secf, — %\ tan @} — tan 6, cos @||.
@

When the overlap area goes to zero, the hotspot effect
disappears. Thus, the shape of the hotspot function, that is, the
way in which it falls off as viewing and illumination positions
diverge, will be conditioned primarily by the shape and height
of the spheroids.

Equation (4) is helpful for us to understand how the shape
of crowns governs the shape of overlap function, and is a good

approximation in usual cases. In a case where it is important
to have an exact solution for overlap function on the principal
plane, we have proven:

0(8,,8.,,¢) = (t — sintcost) (sect; +sect,)/m  (5)
where

h|tan 8: — tan 6., cos ¢|
b(sec 8} + sec )

©)

cost =

We have also obtained exact overlap function on the prin-
cipal cone, i.e., where ¢, = 0 and ¢ varies from 0 to 2.
However, since (4) is accurate enough for our purpose in this
paper and conceptually simpler, we will keep using it in the
later text.

Case2: ¢ # 0,7 and ; # 0, Here we assume that the
viewing zenith is still 8,, but the viewing direction has a
different azimuth than the illumination position. Rather-than
compute the overlap of two ellipses at arbitrary inclinations
and distances directly, the strategy will be to fit a linear
function to the diminution of overlap with azimuth angle. We
approximate

b= ___4R____ @)
h(tan 6, + tan ;)

as the azimuthal cutoff of the hotspot; and linearly interpolate
for ¢ between 0 and ® or 7, whichever is smaller. For the case
® < 7, we will assign O(6;,0,,,¢) = O(8;,0,,¢ = ) for all
¢ between ® and 7. Though the above approximation may
produce small errors in the overlap area, the basic and clear
causal relation between the canopy structure and the hotspot
is preserved. Monte Carlo simulation shows that the above
approximation is very close to simulated results for a wide
range of solar zenith angles and crown shapes, giving accurate
delineation at the edges of the hotspot (which is of special
interest here).

From (4), we may conclude that (1) the azimuthal width of
hotspot effect is basically determined by R/h ratio; (2) the
outward width of hotspot on the principal plane is determined
by b/h ratio; and (3) the inward width is determined by both.

C. Contribution of Sunlit Canopy Surface
and Effect of Mutual Shading

Here we model the effect of sunlit canopy on the bidirec-
tional reflectance (second term in (2)). This variation is more
difficult to deal with, for it depends on the both the density
and angular distribution of ds in (2). For simplicity, Strahler
and Jupp (1990) assumed that each crown could be modeled
as a sphere without mutual illumination shading between ds
elements. Then the second term can be approximated as:

1 ,
KO = 5(1+ <iv>)(1~ g AR secbyor(g)

In this expression, the first term is the illuminated proportion of
the area of a single sphere viewed at position v and illuminated
at position i. This is weighted by the second term, which is
the proportion of the area of spheres visible from zenith angle
6,. Since both terms vary smoothly between zero and one,
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this contribution to the hotspot is quite flat. In the case of a
spheroid, we can simply replace < i,v > by < ¢, v’ >, where

<#,v' >= cost]cosb, + sinbsin ! cos ¢. 9)

The first term in (8) ignores the problem of mutual shading
of one canopy by another. Strahler and Jupp [21] handle
this problem by multiple integration, in which the mutual
shadowing of canopies by one another is treated in the same
way as the mutual shading of leaves by one another, but our
objective here is to derive a simple approximation to describe
the effect for vegetation covers composed of collections of
individual, discrete canopies. To carry this out, we have
developed an approach that applies one-stage geometric optics
to deal with the spatial relationship between the part of the
crown surface that is mutually shaded in the illumination
direction and the part mutually shaded in the view direction.
That is, when the shapes are large relative to the thickness
through which their centers are distributed, these shadows will
tend to shade or obscure the lower portions of the shapes
preferentially.

D. Mutual Shadowing Proportions

In [17] and [23], we proved by simulation and mathematics
(simplified to the one-dimensional case) that for the nadir-
viewed cone model, mutual shadowing of illumination will not
change the ratio K./(1 — K ). (This ratio was itself denoted
K_ in [17], but since then we have turned to the use of K.
as A./A for consistency with K, in subsequent publications.)
Although this is a helpful result, it holds only for the case of
nadir viewing of cones, or more generally for the cases where
the mutual shadowing in illumination and viewing directions
is independent.

For the more general case, let’s first consider the proportion
of crown surface that will be mutually shadowed by other
crowns. In the direction of illumination, each crown has
an area mR?sec 6 projected onto the ground, and the total
projected area (as a proportion of A) then will be ArR2 sec 6,
if there is no mutual shadowing. Because of mutual shadowing,
however, the net projected area will be 1 — e B> sec8] The
difference therefore will indicate the total mutual shadowing.
Thus, we may define the quantity M;, the mutual shadowing
proportion in the illumination direction, as

1-— e—/\ﬂ‘R2 sec ]

Mi=1-—"+FTF"
! AnR? sec 0!

(19
M; will therefore be an index showing the degree of mutual
shadowing in the illumination direction. In other words, each
spheroid will, on average, have a proportion M; of its ground-
projected area that will not be sunlit. Let’s assume that this
part will be concentrated at the lower part of the spheroid.
We may then imagine a boundary drawn on the surface of

the spheroid with the area comprising M; located below it -

(Fig. 1). Similarly, we can define M,, as the mutual shadowing
proportion in the view direction as

1-— e—)ﬂ'rR2 sec @),

My=1-~—"r—
ArR? sec !,

(11

\
Sunlit \
Hemispheroid \‘

Boundary y

.M, Boundary

Fig. 1. Diagram showing M; and M, for a spheroid.

If we again assume that viewing shadows are concentrated at
the lower part of the spheroid, we can similarly define a M,
boundary (Fig. 1).

Clearly, the proportion of sunlit crown the sensor can see
(corresponding to the area above both M; and M, boundaries)
depends on both zenith and azimuth differences between the
illumination and view directions. At the hotspot, M; and M,
boundaries will overlap and the the sensor will see no mutual
shadowing. When the view zenith angle is larger than the
illumination zenith angle, M, will be greater and M;, and little
or no mutually-shaded crown will be visible, depending on the
azimuth difference. When the reverse is true, mutual shadows
will be visible. Thus, this simplification captures the essence
of the mutual-shading effect. However, the true situation is
that the mutual shadowing won’t be strictly under the M; or
M, boundaries, even the crown centers are uniformly located
at the same height. But for now, we will make this assumption
and discuss its implications later.

E. The f-Ratio of Nonnadir-Viewed Spheroids

For the spheroidal case, it is necessary to show whether the
f-ratio will be still independent of density, as in the case of
the nadir-viewing cones [17], [23]. First we consider a single
spheroid in a pixel. From the view direction, the spheroid
will have a projected area T, = mR?secf’; however, only
the portion 1(1+ < 4,v’ >) of that area will be sunlit.
Similarly, the illumination shadow on the ground will occupy
the area 7 R? sec §]. The compound area of viewed crown plus
illumination shadow (again as projected onto the background)
will be I' = 7R? [sec 6! + secd, — O(0!,6’,¢)]. Thus, we
define the ratio F' for a single spheroidal crown as

P T _H08<E )
' secl] + sect, — O(9.,0,,9)’

12)

where I'; is the sunlit area of the crown, and we define the
corresponding ratio

K.

1-K,

f=

(13)

for a pixel or a scene. It is easy to show that in the case of
an one-crown pixel, f = F.

Now let’s imagine that there are n such crowns and shadows
within a pixel. If there is no mutual shadowing, we still have
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f = F. As n increases, however, mutual shadowing will likely
begin, and K, = ¢ AR [secti+sect, —0(6:,6:.8) will be the
mean of the random case. Similar to (10), we define the mutual
shadowing proportion M as

1-K,
AT

which is the fraction of total shadowing cast from single
crowns that falls on other crowns instead of the background.

The sunlit and viewed crown surface of any single crown
will be reduced by hiding either from viewing or from il-
lumination. Thus, the f-ratio with mutual shadowing will
be

M=1- (14)

_ nFc - Z AAC
f= A(l-K,) '
_ plz 284/l zlA_"i;("FC) (15)

where > A, is total decrement from nl'. to A, ie., the
background-projected area of viewed sunlit crown surface. We
may express »_ A 4_ as three terms: a decrement due to mutual
shading in the view direction, plus a decrement due to mutual
shading in the sun direction, minus those elements shaded in
both directions:

Z Ay, =nly(PM, + PM; — P,), (16)

where P, is the conditional probability that a crown surface
element will face the sun given that it is mutually shaded from
view; and P; is the probability that a crown surface element
will face the viewer given that it is mutually shaded from
illumination. Both P; and P, are average proportions of areas
projected in the view direction.

P,, the third term, is the overlapped part of the first
two terms, expressed as a fraction of I',. P, contains three
parts, derived from three types of surface clements. First
are those surface elements involved in the intersection of
crowns. These will always fall inside other crowns, and
thus will contribute to neither the hotspot nor to the bowl
shape of the BRDF. Second are those surface elements that
fall within overlapped illumination and viewing shadows of
another single crown. This collection obviously contributes
to the hotspot, and is due to the spatial correlation of the
shadows. Third are those surface elements that fall into one
crown’s illumination shadow but in another crown’s viewing
shadow. These elements will contribute to the top-crown
viewing phenomenon, which occurs when the probabilities of
being hidden in two directions are not independent.

Substituting (16) into (15) yields a single expression for f

Fv(Pva + PzMz - Pa)/rc
1-M ’

f=F= (7

F. Modeling P,, P; and P, in the Principal Plane

Now, our problem is to model these three P’s. However,
we prefer at present to treat these three parts at the same time
by assuming two extreme cases:

1) (“Uniform Height”) All illumination or viewing shadows

are under M; or M, boundaries respectively, and the in-

tersection and hotspot contribution part will be naturally
included in the intersection of these boundaries.

2) (“Random”) Illumination and viewing shadows are in-
dependently scattered on other crowns, thus both the
hotspot and bowl-shape contribution of mutual shadow-
ing can be ignored.

In the first case, refer to Fig. 1 to model P,, FP; and
P,, where an “average crown” is used to visualize the M,
and M; boundaries. If viewing and illumination shadows fall
strictly below M,, and M; boundaries, then P,, the conditional
probability that a crown surface element will face the sun
given that is it mutually shaded from view, will be the ratio
of the illuminated portion of the projected surface below the
M, boundary to the total projected surface below the M,
boundary. Correspondingly, P;, the conditional probability that
a crown surface element will face the viewer given that is
it mutually shaded from illumination, will be the ratio of
the viewed portion of the projected surface area below the
M; boundary to the total area below the M; boundary (not
completely shown in Fig. 1). Note that M; is the proportion
of mutually-shaded crown surface projected to the direction of
illumination, but P;M;T, is the area of this fraction of crown
surface projected to viewing direction. Thus proper calculation
of these areas will involve some projection change. P, is the
overlap area of these two, represented as a fraction of T,.

Let’s first consider the case in the principal plane, which
is shown in the four parts of Fig. 2. For simplicity, we will
assume that all shadows fall below the boundaries M, and
M;, which are the traces of planes intersecting the spheroid at
its center (“great ellipses”). The angle between the planes of
the M; great ellipse and the illumination boundary (which is
also a great ellipse) is:

Or, = COSﬁl(l - 2M;). (18)
We define y;, similarly. At the hotspot, the M; and M,
boundaries coincide Fig. 2(a), and thus P, = P, = 1,
P,=M,=M,and f = F = 1.

Now, assume that the viewing zenith angle increases to
0, > 6;. In usual cases when mutual shadowing on crowns
is to be considered, the M, boundary is higher than the M;
boundary. The sensor’s view is shown in Fig. 2(b), where P, is
the ratio of the area between M,, boundary and the illumination
boundary to the whole area under the M, boundary. That is,

_ Mvrv - (F’b - Fc)

P,
v Mvrv 9

19)

while P; is always one, and P, always cancels the M; term.
Then, (17) becomes

_ 1-P,MJT,/T.
I=F—"n =F

(1-M,)l, 1—e M
1-M)T. 1-K

( ) ( g)(zo)
This result tells us that when the viewing direction in the
principal plane deviates from hotspot outward (6, > 6;), the
f-ratio will change little from one if coverage is high and 6,
is large, reflecting the fact that almost no shadows on crowns
can be seen.
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Fig. 2. Various views of a spheroid illustrating mutual shadowing when
illumination and viewing positions are in the same azimuthal plane. A, at the
hotspot. B, 6, > 6,. C, 6, < 6;.D, 8, and 8; on opposite sides of nadir,
with view from the side.

When the sun is close to nadir and the coverage is very
low, the increment of 0z, may be so small that M, will be
under the M; boundary. In this case, mutual shadowing can
be simply ignored as in [21].

When 6, moves inward from the hotspot on the principal
plane (but has not reached nadir yet), an average crown will
look like Fig. 2(c), where we assume M; is higher than M,
Hence, P, = 1, P, = M, and

P - 1 — cos(0a, — 0, + 8. cos ¢)
' 1 — cosflyy,

, o2y

or zero, if the M; boundary
view.

After 6, passes the nadir, the M, boundary goes to the
opposite side of the spheroid from M;. In this case, the average
crown the sensor sees will resemble Fig. 2(d), which shows
the horizontal projection of an average crown at ¢ = /2 so
that we can identify all boundaries clearly. For this case, P, is
the same as in (21), and with # equal to 7. P, is the fraction
of M, over the illumination boundary, i.c.,

1—cos 6y,
0, (Om, — 0+ 6, cos ) < 0

R:{
(22)

Note that when 6, is between the hotspot and nadir, P, is
always one, and thus a discontinuity of P, appears at the nadir.
This discontinuity arises from the assumption that all shadows
fall under the M, boundary, and when viewing the direction

is too low to show up in sensor’s

%ﬂ&ﬂ), (On, — 6.+ 6, cos8) > 0
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passes nadir, there is a sudden change for viewing shadows
from the same side of crown as the illumination shadow to the
opposite side of the crown. The discontinuity of P, reflects
this fact. Monte Carlo simulation, discussed in a later section,
shows the same pattern when the crowns are distributed at the
same height. However, as we stated previously, in such cases,
all M, at 8, = 0 is owing to physical intersection of crowns,
and such intersection will not change with viewing geometry,
thus P, M, should be still continuous at nadir, and equal to
P, in fact. In other words, the formula for Case 2 will be
extended to the Cases 3 till very large viewing zenith, so that
Or, — 0 + 0,cosp) > 0 again.

In the “random” case, M; and M, are independent and
thus 3 A4 /(nT.) = M, so (15) simplifies to F' = f. But
the practical situation is always between these two extremes,
depending upon the height distribution. If all the Ccrowns are at
the same height, the situation will be very close to the “uniform
height case”—the mutual shadows will always fall on the
lower part of the crowns and thus the crown top-viewing effect
will be strong. However, when tree heights are distributed over
a wide range, the top layer of the forest canopy will play a
more important role in determining the BRDF of the canopy
than the lower layer. Therefore, we cannot say that when
crown heights are distributed in a wide range, the bowl-shape
of the BRDF will not be apparent; rather, it will be determined
basically by size, shape, and height of crowns in the top layer.
Thus, we presently restrict ourselves to considering a single
top layer only, where the range of distribution of height does
not exceed twice the vertical axis of the spheroid. At such an
intermediate height distribution range, we will take a weighted
average of the two values associated with each extreme.

To share the weighting between the two cases, we use the
parameter

p=(1-

When (hy — hy) > b, 8 is forced to be zero, indicating the
“random” case, or, better to say, we have to redefine the layers.
Then both P, and P; are calculated as a weighted sum of
corresponding terms

hz—hl

2
m ) , if(ha — ki) <4b.  (23)

P=pP+(1-8)P, 24)

where P; and P, are the probabilities associated with Cases
1 (uniform height) and 2 (random) above.

Fig. 3 shows values for P, and P, calculated in the principal
plane using the formulae above. The calculations use a density
of 30 crowns of 3-m radius per 900 m? area, a crown shape
ratio b/R = 1.5, b/h = 0.18, and a canopy height A = 25m.
Vertical coverage for this example is 1 — e~**B* = (.61. The
illumination zenith angle is taken as ; = 30°. Note that the
horizontal axis is plotted as 6/, rather than 6,; for this shape,
by = 30° gives 8/ = 40.9°. In Fig. 3(a), ho = h; = h; in B,
(h2 —h1)/h =0.2; and in C, (h2 = hy)/h = 0.4; that is, B =
1, 0.53, and 0.20, respectively.
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Fig. 3. Calculated values for P; and P, using formulas (21)+24).
. Parameters as described in text.

G. Validation Using Monte Carlo Simulation

To validate these approximations, we developed a Monte
Carlo simulation program to evaluate P;, P,, P, and M
for the spheroidal crown model. It first generates 3-D ran-
dom locations of centers of spheroids according to the given
parameters. Then it calculates and stores the area, location,
and orientation of flat surface elements conforming to the
surfaces of each spheroid using a given step size in a spherical
coordinate system originated at the center of the crown.
This accomplished, the program calculates the surface normal
of each element, and if the dot-product of its normal and
illumination direction is negative, the element is classified
as an element “facing away from the sun.” Otherwise, the

program calculates whether it is in the illumination shadow
of any other crown. Border effects are handled by projecting
the shadows of the far edge to the near edge. If an element
is not in any shadow, it is classified as a sunlit element; if it
falls within the shadow of any other crown, it is a “mutually
shaded” element. However, if the element itself falls inside
another crown, as when two or more crowns intersect, it is
classified as an element facing away from the sun in order
to reduce the number of categories. (The percentage of these
concealed elements is easy to retrieve, since the percentage of
real “facing-away” elements is always 50%.) Then a similar
procedure repeats for each viewing direction, yielding a total of
nine categories of surface elements. Finally, the total areas of
surface elements in each class for each given illumination and
viewing position are summed, and the totals and appropriate
proportions are output for further analysis. The procedure may
be repeated for different random draws of spheroid center
points.

Figs. 4(a—c) present P, and P; values obtained from sim-
ulation, with the same scene parameters as Figs. 3(a—c). It
is obvious that the calculated results catch the basic features
of the simulation reasonably well. There are also some note-
worthy differences between simulated and calculated results,
especially between Fig. 3(a) and Fig. 4(a). After passing the
nadir, the calculated P, drops from one to about 0.1 instead
of to zero as in the simulation. This is because the simulation
properly ignores the intersected crown elements, whereas the
calculation shows 6,7, larger than 6;, and thus part of the
surface that is mutually shaded from view still faces the
sun. These elements are indeed those of intersected crown
surfaces, since the crown centers are distributed at the same
height. When the viewing zenith angle increases from nadir,
the calculated P, remains flat, but the simulated P, starts to
increase slightly at about —10°. This increase occurs when
0, finally increases faster than §,. Then, the M, boundary
goes up again above the illumination boundary, which should
occur at about ¢/, < —75°. This difference reflects the fact
that viewing shadows are not strictly under the M, boundary
even when all crowns are centered at the same height. But
as we can predict, this difference will not yield a large error
in the BRDF calculation. We also have carried out a further
series of comparisons of calculated and simulated values for
P; and P, with varying densities and sizes, and the results are
largely similar, thus validating the computational approach as
a reasonable approximation.

H. Azimuthal Variation

Figs. 3 and 4 display results in the principal plane. Let us
now turn to variation induced by change in relative azimuth.
For this discussion, we will define the “principal cone” as
the azimuthal cone in which 6; is fixed and ¢ varies. First,
consider the geometry involved. Fig. 5 presents a horizontal
projection of an average crown in the direction of the viewing
azimuth for a situation in which ¢ # 0. In this case, P, is
proportional to the spherical triangle ABC, F; is proportional
to DEF, and P, is their intersection ABGD. Even in this simple
case, calculating these values will be tedious, but it is easy
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Fig. 4. Values for P; and P, using Monte Carlo simulation. Parameters as
described in text.

to imagine that as ¢ gets larger and larger, the illumination
boundary (the arc FADC) will move leftward, and thus Py, P;,
and P, will all shrink, going to zero at the antihotspot direction
(¢ = =) (assuming that M, remains below the illumination
boundary). This relation can be fairly approximated as being
linear and applicable to other §, angles also.

Thus, knowing the values of P,, P;, and P, for given 8,
6, on the principal plane (¢ = 0,7), it is not difficult to
obtain the f-values for other ¢ by interpolating the P, P;,
and P, at any ¢. Of course, they may also be calculated more
accurately by spherical surface geometry. At present, we may
expect that a linear or negative exponential approximation will
be simple but accurate enough. Figs. 6(a—c) show how P,
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Fig. 5. Diagram of a circular crown viewed horizontally in the direction of
viewing azimuth with illumination azimuth to the observer’s left.

and P, values obtained from simulation vary on the principal
cone, using the same canopy parameters as those in 3(a—c),
respectively. As in the case of variation along the principal
plane, the approximation captures the variation quite well.

In short, our examination of the mutual shadowing of crown

surfaces yields a simple approach to modeling the bowl-shape
of the BRDF—changing (8) to
K.C=(1-KgfC, 25)

in which f is calculated at ¢ = 0,7 for the principal plane
case from (23), using (17) and (24), and then interpolated to
the proper azimuth.

[Il. FORWARD SIMULATION OF BRDF’S

To explore this model more fully, we calculated a number of
BRDF’s for several sets of geometric parameters and illumi-
nation angles. In selecting the parameters, we tried to choose
reasonable values for three vegetation covers—conifer forest,
savanna, and shrubland—at plausible cover percentages, solar
zenith angles, and in typical reflectance bands. Three basic

‘shapes of spheroids were used (Table I). Conifer forest was

modeled as a collection of spheroidal crowns, 6 m wide and
20 m tall, with a maximum height to the top of the crown of
30 m. For savanna, our tree shape was a flattened spheroid, 10
m wide and 5 m high, with a maximum height of 15 m. For
the third cover type, shrubland, the shrub was taken to be a
spheroid 0.5 m wide, 1 m high, and resting on the ground. For
each vegetation type, we also selected low and high percent
cover values that we thought might be typical of real values.
The cover value is simply the random expectation of crown
cover at nadir, ie., 1 — e—"R’ These are provided in the
table as well.

In exploring modeled BRDF’s for these vegetation covers,
two sun angles were chosen—15° and 55°. These seemed
realistic for a satellite-sensing scenario that would include
overpasses from midmorning to midafternoon at all seasons
of the year. For spectral bands, recall that in the general
geometric-optical model, there are four sceme components:
sunlit and shaded canopy (or leaf), and sunlit and shaded
background, and that the proportions of the four scene com-
ponents as a function of view and illumination positions are
weighted by their radiance or reflectance signatures to provide
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Fig. 6. Values for P; and P, in the principal cone using Monte Carlo
simulation. Parameters as described in text.

TABLE 1
SHAPE AND COVER PARAMETER SETS

Cover, Percent

(:}(;;Zr b, m h, m R,m Low High
Conifer 10 20 3 20 60
Savanna 25 12.5 5 10 40

Shrub 0.5 0.5 0.25 30 80

the radiance or reflectance of the scene as a whole. In the
mutual-shadowing model derived above, we have considered
two components only—sunlit crown (C) and sunlit background
(G)—but since the random expectation of total ground and

TABLE II
REFLECTANCE VALUES FOR SCENE COMPONENTS
Band G C z.T
Red 0.15 0.08 0.01
Near-Infrared 0.20 0.55 0.05

crown cover at any view angle is so easily determined, the cal-
culation of the proportion of the scene in shaded components
is quite simple. However, to reduce complexity somewhat, we
considered shaded canopy and shaded background to have the
same reflectance signature (Z), resulting in a three-component
model. Two bands were considered: red and near-infrared
(Table II). Although the values selected are generally typical
of reflectances observed in these regions for plant matter
and soil, their main significance lies in the fact that for the
red band, the sunlit crown is darker than sunlit background,
whereas, in the near-infrared case, sunlit crown is lighter.
Thus, red—near-infrared comparisons help clarify the role of
the relative brightness of the two cover types in controlling
the shape of the BRDF.

In the figures that follow, the BRDF’s are displayed in a
rectangular coordinate system. Each viewing position in the
hemisphere is taken as as a pair of polar coordinates, resolved
onto the z-y plane as a vector of unit length, and the reflectance
at that position is taken as the z-value. This produces a three-
dimensional surface which is then displayed as if viewed from
“behind” and above. (For ease in discussing the shapes of the
BRDF’s we will regard viewing positions near the principal
plane on the hotspot side as the “front” of the BRDF and
viewing positions near the principal plane opposite the hotspot
as the “back.”)

A. BRDF’s Without Mutual Shading

The BRDF of a vegetation cover is a complex function of a
set of variables, including the shape of the crown, the range of
heights through which crown centers are distributed, the count
density of crowns on the surface, and the spectral band in
which measurements are made. To better understand the effects
of each, we will examine the basic features of BRDF’s before
and after the effects of mutual shading are accommodated. We
begin with a discussion of BRDF’s for which mutual shading is
nearly absent—that is, the parameter 3 is set to 0.05, indicating
that the probabilities of view and illumination for any crown
surface facet are nearly independent.

1) Effect of Crown Shape and Spectral Band on the BRDF Fig.
7 presents six modeled BRDF’s for the three basic spheroid
shapes as calculated for red and near-infrared bands.

Each type is at high cover and illuminated at a 55° solar
zenith angle. As the figure shows, each spheroid generates
a differently-shaped hotspot. Since the conifer is a tall, thin
ellipsoid, its hotspot is much wider (in an angular sense)
in the zenithal direction than in the azimuthal direction.
This assymetry occurs because a greater area of shadow
behind the crown is revealed for a given change of view
angle in the direction of the principal cone than in the
direction of the principal plane. The savanna shape shows
the opposite characteristic—a hotspot that is wider in the
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Fig. 7. BRDF’s in the red (a—) and near-infrared (d—f) bands for conifer (a, d), savanna (b, €), and shrubland (c, f) vegetation types at high cover and
55° solar zenith angle. Mutual shadowing is set at a very low value (3 = 0.05) to emphasize the effect of geometric shape.

azimuthal direction than in the zenithal direction. This results
from a similar effect in the opposite direction, in which the
shadow is revealed more quickly in the zenithal direction
than in the azimuthal direction. The shrub shape presents
the broadest of all hotspots; it is especially broad around
the principal cone. This effect occurs because the shrub sits
directly on the ground and obscures part of its shadow from
almost all viewing positions except those at back of the BRDF.

Beyond the hotspot, the general shape of the BRDF is also of
interest. For the conifer and shrub types, the BRDF exhibits a
bowl-shape, whereas for the savanna type the shape is more of
a dome. In the case of the conifer and shrub, these long shapes
present a wider cross section toward the viewer as the viewing
position drops toward the horizon and thus they obscure more
dark shadows falling on the background within the vegetation
stand. However, the savanna trees, being quite broad, present
their greatest cross section when the viewer is overhead. As
the viewing position descends, their cross section decreases
and more dark shadows are visible.

Also of note is the fact that the shapes of the BRDF’s
of each type are similar for both bands, in spite of the
contrast reversal that occurs between canopy and background.
Thus, the shape of the BRDF is primarily a function of the
geometry of the objects. We do see, however, that the bowl-
shape of the conifer and shrub BRDF’s is accentuated for the
near-infrared. This occurs because the crown cross-section is
brighter than the background in the near-infrared, and as the
viewer descends from an overhead position, not only are more
shadows obscured, but they are also obscured by a brighter

canopy material. For the savanna canopy, the same effect
flattens the BRDF, but it still maintains a slight overall dome-
shape. The general upward slope from back to front for all
the BRDF’s results because the brightness contribution of the
crown always increases as the viewer moves from back to front
at the same view zenith, since more and more of the crown
will become sunlit as the hotspot azimuth approaches. The
very slight upward turn at the edges of the BRDF is produced
because [ is nonzero and at the largest view zeniths a slight
mutual shadowing effect is felt.

2) Effect of Cover on the BRDF Fig. 8 shows BRDF’s for
the three vegetation types in the red band. For each vegetation
type, low and high cover conditions are contrasted. As in the
previous figure, mutual shadowing is set at a very low value.
As we might deduce from the discussion in the preceding
section IIB the cover does not influence the shape of the
hotspot, only its height. That is, the hotspot “cutoff” positions
on the principal plane and principal cone do not depend on
the density of the spheroids, only on their geometry and
height above the ground. This phenomenon is obvious from
examination of the figure. The cover does, however, influence
the overall height of the BRDF. Since the background is
brighter than the crowns in the red band, the BRDF with the
lower cover is the naturally the lighter.

Beyond the hotspot, the cover does influence the overall
shape of the BRDF somewhat. For example, the conifer BRDF
changes from a slight bowl-shape to a slight dome when cover
is reduced from 60% to 20%. In this case, shaded crown is
being revealed slightly more quickly than shaded background
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Fig. 8. BRDF’s for conifer (a-b), savanna (c—d), and shrubland (ef) vegetation types in the red band at 55° solar zenith angle. Left (a, c, e): low
cover. Right (b, e, f): high cover. Minimal mutual shading.

is being obscured as the observer drops away from the nadir
viewpoint. A similar phenomenon flattens the bowl-shape for
the shrub canopy at the lower cover value.

3) Effect of Sun Angle on the BRDF A change in sun angle
affects the BRDF because it changes the shapes of the shadows
that are cast by the plant crowns (Fig. 9). The most obvious
change is to the hotspot. As the sun rises in the sky, shadows
become smaller and fall closer to the object center. Further,
shadows of the spheroidal crowns will tend to become more
circular, thus reducing the assymetry of the hotspot in the
principal plane and principal cone directions. These effects
will tend to broaden the width of the hotspot and make it
appear more uniform as its center moves to a new position
nearer to nadir. This effect can be easily seen in the figure,
which displays near-infrared BRDF’s. The same features are
evident in red BRDF’s (not shown).

Beyond the hotspot, the general shape of the BRDF does
not change much. The overall level of reflectance increases
somewhat, since the shadows are now smaller. For the shrub

case, the modest bowl-shape nearly disappears, although the
BRDF is still clearly at a minimum at the back of the function
where shadows are not obscured by crowns.

B. Effect of Mutual Shadowing on the BRDF

The approximation to include the effects of mutual shading
into the geometric-optical BRDF calculation has the primary
effect of deepening the bowl at the back of the BRDF. This is
clearly shown in the BRDF’s of Fig. 10, where 3 = 0.0, 0.6,
and 1.0 for conifer (red) and savanna (near-infrared) vegetation
types at high cover and large solar zenith angle. However, the
deepening is actually accomplished by raising the brightness
at other view angles, since the effect of mutual shadowing
is to obscure the shadows and enhance the amount of crown
seen. Thus, the hotspot becomes less distinctive as the effect of
mutual shadowing increases. In the conifer case, a strong bowl
appears, with a distinct edge corresponding to the viewing
position at which M; falls below M,,. In the savanna case, the
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Fig. 9. BRDF’s for conifer (a-b), savanna (c-d) and shrubland (e—f) vegetation types in the near-infrared band. Left (a, c, ¢): Solar zenith angle 55°.
Right (b, e, f): Solar zenith angle 15°. Minimal mutual shading.

effect is to turn up the BRDF at the edges, while its modest
dome-shape is preserved near the center.

Inspection of the figure suggests that the mutual-shadowing
correction has a stronger effect in the near-infrared than in
the red. Since the scene proportions are not functions of
the spectral band, we may conclude that this effect results
simply because the crown reflectance is brighter and the effect
simulates the seeing of a greater proportion of crown than
expected in the random case. Other plots of BRDF’s (not
shown) confirm this understanding.

Regarding changes to the BRDF that occur as a function of
illumination position, cover, and spectral band while mutual
shadowing is accommodated, in general the effects are similar
to those that occur without accounting for mutual shading (Fig.

11). With shifting illumination angle, the hotspot moves to the
new illumination position and broadens if nearer to nadir, or
narrows if further from nadir (Figs. 11(a), (b).) With increasing
cover, the effects are generally the same, but with the enhanced
bowl-shape superimposed (Figs. 11(c), (d)), compare with
Figs. 8(e),(f)). With change in spectral band (Figs. 11(e), (f),
compare with Figs. 7(b),(e)), the geometry still dominates,
but the stronger mutual shadowing effect in the near-infrared
obscures the hotspot to a significant degree.

IV. DISCUSSION

The most obvious feature of the BRDF of vegetation covers
that consist of discrete plant crowns is the hotspot. The hotspot
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Fig. 10. BRDF’s for conifer (a, c, €) in the red band and savanna (b, d, f) in the near-infrared at high cover and 55° solar zenith angle. (a)~(b):
3 =0.0. (c)(d): 8 =0.6. (e)(): 3=1.0.

itself is controlled by several variables, of which the most
important are the shape and density of plant crowns, and
the contrast between the brightness of the crown and the
background. The density of crowns and the brightness contrast
control the magnitude of the hotspot effect, whereas its basic
shape is determined by the shape of the plant crowns. That is,
when the plant crown casts a shadow that is not circular, the
degree to which the shadow will be revealed as the viewing
position diverges from the illumination position is a function
of the shape of crown and the shape of the shadow. It is
important to note that since in the normal case the shadow
is not circular, hotspots will, by nature, be assymetric in
angle. This fact, confirmed by published suites of bidirectional
reflectance factor measurements [22], [24], suggests that the
common practice of simply representing the hotspot effect

by a function that is dependent only on the phase angle
between illumination and viewing positions [9], [13], [14],
[25], [26] may be inappropriate for careful modeling of natural
vegetation covers.

As to the bowl-shape of the BRDF that is also noted for
discrete-canopy vegetation covers, it seems obvious from our
simple mathematical modeling and Monte Carlo simulations
that the basic reason for this phenomenon is that the lower
parts of crowns are more likely to be hidden from both
illumination and viewing at large zenith angles, whereas the
upper portions are more likely to be exposed to both. Like
the hotspot, the mutual-shading effect is dependent on the
shape and density of plant crowns and the contrast between
the brightness of the crown and the background. Although the
accuracy of our model for this effect remains as yet unverified
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BRDF’s demonstrating the effect of change in illumination position, percent cover, and spectral band for strong mutual shadowing (3 = 1.0).

(a), (b): conifer, red band, low cover, solar zeniths 55° and 15°. (c), (d): shrub, red band, solar zenith 55°, low and high covers. (¢), (f): savanna,

high cover, solar zenith 55°, red and near-infrared bands.

by careful bidirectional radiance measurements, the basic
agreement between modeling and simulation is encouraging.

It seems obvious that the mutual shadowing effect that
produces the bowl-shaped BRDF will always occur to some
extent in a vegetation cover of discrete plant crowns at any
reasonable density. Thus, our random case above, in which
viewing and illumination shadows are independent, is never
likely to occur. In practice, the canopy will always have a
top layer that dominates its BRDF at large zenith angles. At
this time, we still don’t know how to define such a top layer,
nor how close a real canopy is to either the uniform-height or
random extremes.

Another problem concerns the formulation of the parameter
#, used in (24), which is still somewhat intuitive, and lacks
physical meaning. Given the size, shape, height, and spacing
distributions, it will not be difficult to define a depth where

the probability that a crown surface element is both sunlit and
viewed is, in fact, zero. But a such a depth will vary with
viewing direction, which may present in problem in practical
application. Nonetheless, it may still be an improvement to
define a better index 3 from the viewpoint of gap probability.

Another limitation arises from the problem that in the
uniform-height case, when coverage is high, crowns are heav-
ily intersected. Thus, our model will become a rough-surface
model. In such a case, volume scattering of crowns may
be more important than surface scattering in determining the
canopy BRDF, especially when the solar zenith angle is small
and shadowing is minimal. A similar situation will result when
the leaf area index within crowns is small or the reflectance
of leaves is high and multiple scattering becomes important.
In these cases, the differences between shadowed and sun-
lit elements may become much smaller, and thus radiative
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transfer or nested geometric-optical models must be applied
to determine G, C, T, and Z more precisely. Only further
development of such hybrid or nested models can help us to
determine where the breaking point lies between the suitability
of simpler pure geometric or more complicated models, which
would reflect the basic mechanisms of interaction of radiation
with discontinuous canopies and yet be relatively simple for
inversion. :

V. CONCLUSION

Because many natural vegetation covers may be regarded as
assemblages of plant crowns that are located on a background
plane and interact with light as discrete objects, geometric
optics can provide an approach to model the bidirectional
reflectance distribution function of natural vegetation canopies
that captures the most important features exhibited by bidirec-
tional measurements of such canopies—notably the hotspot
with its angular assymetry, produced by the uncovering of
noncircular shadows as viewing and illumination positions
diverge, and the bowl-shape, produced by the hiding of mutual
shadows of crown on crown when view zenith angles are large.
The models presented here are not exact physical descriptions
of these phenomena, but are approximations that exploit the
primary mechanisms relating the size, shape, and count density
of plant crowns to viewing and illumination positions and
crown-background reflectance contrasts. As such, they could
be improved in a number of ways, but without comparison
to directional reflectance measurements it is difficult to de-
termine which improvements are most needed. Accordingly,
the authors are now embarking on a program of acquisition
of bidirectional reflectance measurements, both in the U.S.
and the Peoples’ Republic of China, that will include not
only requisite radiance measurements, but also measurements
of plant crowns, their locations and geometries, as well the
characteristics of the leaves, branches and trunks they contain.
We hope these data will guide the future development of
reflectance models of many sorts and the further development
of inversion procedures to extract basic information about
plant canopies from remotely-sensed data.
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